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The acquisition of mutations that activate oncogenes or inactivate tumor suppressors is a
primary feature of most cancers. Mutations that directly alter protein sequence and structure
drive the development of tumors through aberrant expression and modification of proteins,
in many cases directly impacting components of signal transduction pathways and cellular
architecture. Cancer-associated mutations may have direct or indirect effects on proteins and
their interactions and while the effects of mutations on signaling pathways have been widely
studied, how mutations alter underlying protein–protein interaction networks is much less
well understood. Systematic mapping of oncoprotein protein interactions using proteomics
techniques as well as computational network analyses is revealing how oncoprotein mutations
perturb protein–protein interaction networks and drive the cancer phenotype.
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Mapping the molecular networks that govern
biological systems is a key goal in systems
approaches to biology and medicine [1].
Protein–protein interaction (PPI) networks are
of particular interest because of their intrinsi-
cally functional nature; interactions between
proteins assemble proteins into functional pro-
tein complexes or link them into pathways
and larger networks, and these higher-order
assemblages of proteins are at the heart of
most cellular processes. Significant efforts have
been made to map PPI networks, using both
computational and experimental approaches.
Experimental approaches such as yeast two-
hybrid and mass-spectrometry proteomics have
been applied on a large scale to map thou-
sands of protein–protein interactions [2–4]. In
most cases, however, these studies have been
conducted under standard laboratory condi-
tions, in which the dynamic nature of PPI net-
works is not considered [5]. Environmental
signals, tissue type and genotype (e.g., muta-
tion status) are some of the important features
that determine cellular ‘context’, and the state
and structure of PPI networks. In cancer,
somatic mutations are important determinants
of tumor phenotype, and although genome
sequencing has created extensive catalogs of
somatic mutations across diverse tumors, we

know very little about the molecular effects of
the vast majority of these mutations. Somatic
mutations that affect protein function may
result in stabilization or destabilization, altered
interaction interfaces, and/or alter sub-cellular
localization of the mutant protein. Gain or
loss of interaction partners is an important
consequence of protein mutations, and in turn
may result in ‘rewiring’ of PPI networks, with
associated alteration in cellular behavior. For
example, although p53 is best known as a
tumor suppressor, certain mutations promote
p53 oncogenic properties [6]. These gain-of-
function effects may be mediated via altered
specificity or affinity for interaction partners,
as illustrated by a recent study showing how
an interaction between mutant p53 and Pontin
(RUVBL1) promotes the invasion and migra-
tion of tumor cells [7]. Similarly, a proteomic
comparison of the interaction partners of
mutant and wild-type p53 identified several
new mutant p53 partners, one of which,
nardilysin, was shown to promote invasive-
ness [8]. Oncoprotein mutations frequently
result in constitutive activation of signaling
pathways and bypassing of normal regulatory
controls. We recently showed how oncogenic
variants of the p100a subunit of PI3K interact
with insulin receptor substrate I (IRS1), and
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how mutant b-catenin interacts with, and stabilizes DNA
methyltransferase I (Dnmt1); in both cases, the mutant interac-
tions activate downstream signaling pathways [9,10]. In this
review, we seek to bring together, and illustrate by examples,
what we know about how mutations alter protein interactions
and PPI networks with proteomic techniques that may be used
to map these altered networks.

PPI network mapping: large-scale techniques
Binary interactions between pairs of proteins of interest have
long been studied using the yeast two-hybrid (Y2H) tech-
nique [11], and large-scale applications of Y2H have enabled the
construction of reference human interaction networks [4].
Applications of Y2H have contributed enormously to our
understanding of oncoprotein PPI networks by identifying
interaction partners for known oncoproteins [12] or by focusing
on systematically mapping PPI networks that define specific
cancer-relevant pathways, such as the MAPK pathway [13].
Although Y2H is a powerful tool for PPI analysis, interactions
are by necessity identified in yeast cells rather than in a cancer-
relevant context, and it cannot therefore provide a view of the
complexity of the proteome in an endogenous cellular environ-
ment. This drawback has been somewhat mitigated by the
development of similar methods in mammalian cells [14], and a
recent application of a mammalian two-hybrid assay showed
how changes in the interaction partners of wild type and onco-
genic variants of epidermal growth factor receptor could be
detected [15].

Mass-spectrometry proteomics methods are a highly comple-
mentary technique to Y2H for large-scale PPI analysis.
Affinity-purification mass-spectrometry (AP-MS) is the
method-of-choice for focused analysis of oncoproteins and their
interaction partners. In AP-MS, ‘bait’ proteins of interest are
isolated from biological samples using antibodies and then asso-
ciated ‘prey’ proteins identified and quantified by mass spec-
trometry [16]. In principle, antibodies with high affinity and
specificity for the bait proteins can be used to affinity purify
associated protein complexes under physiological conditions.
However, such antibodies are not available for most proteins
and generation of high-quality antibodies is time consuming,
expensive, and often not successful. More pragmatically, bait
proteins are typically epitope-tagged, expressed in cultured
human cells, and then associated protein complexes recovered
using an antibody against the epitope tag [16]. This approach
will be especially important for the analysis of oncoprotein
PPIs since antibodies specific to different mutant or variant
alleles of a target oncoprotein are typically unavailable. AP-MS
has been widely used to analyze PPI networks associated with
human disease. We previously used AP-MS to survey protein–
protein interactions of 338 epitope-tagged bait proteins in
human cells [17]. Most of the selected bait proteins have known
disease associations, and 15% of them correspond to known
tumor suppressors or oncoproteins in the Tumor Associated
Gene database [18]. AP-MS has also been widely used to map
PPI networks for specific diseases (for example, identification

of the interaction partners for proteins linked to vascular condi-
tions in the brain [19].

Proteomic and transcriptomic analyses of clinical samples
(e.g., tumors) has contributed enormously to understanding the
complexities of the cancer cell state [20]; however, pinpointing
the specific effects of individual oncoprotein mutations in the
resulting data is challenging, in part due to the genotypic com-
plexity of the samples in which a multitude of mutations may
contribute to the phenotype. To probe the effects of individual
mutations on PPI networks, quantitative, phospho- and interac-
tion proteomics techniques have been applied to cell lines
expressing specific mutations. For example, proteomic analyses
of the network-level effects of the adenomatous polyposis coli
(APC) tumor suppressor have been performed using an isogenic
pair of APC-null and -expressing cell lines [21]. Similarly, an
integrated protein expression and phosphoproteomic approach
was used to analyze isogenic cells edited with different KRAS
mutations to reconstruct allele-specific PPI networks [22].

Oncoprotein mutations that constitutively activate signaling
often cause modifications of protein stability or abundance in
cancer cells. An important experimental consideration for AP-
MS experiments therefore is to ensure that bait proteins are
regulated and expressed at endogenous levels, and several meth-
ods that achieve this have been developed. For example, Bacte-
rial Artificial Chromsome clone recombineering has been used
to engineer epitope-tags into the target Open Reading Frame
so that flanking regulatory regions are preserved. These clones
are then transfected into the desired cells and AP-MS experi-
ments performed [23]. Alternatively, the genome of target cells
(e.g., cancer-cell lines or primary cells) may be directly engi-
neered to knock-in epitope tags at loci of interest. To facilitate
the identification of oncoprotein mutant-specific interaction
partners, we developed a proteomic approach using cancer cell
lines with endogenously epitope-tagged oncoproteins [24,25]. The
singular advantage of ‘knock-in AP-MS’ is that specific alleles
may be epitope-tagged thus providing a technique for analyzing
allelic-specific (e.g., mutant) PPIs. This method has been
applied to identify protein phosphatase (PPP1CC2) interaction
partners in embryonic stem cells [26], and previously by us to
identify mutation-specific partners for the p110a subunit of
PIK3CA. The latter study showed that two mutations with dif-
ferent mechanisms of action and oncogenic properties also
interacted differentially with their downstream partner,
IRS1 [9]. These types of techniques, that allow endogenous PPI
networks to be detected in relevant biological contexts (e.g., in
the presence of oncogenic mutations), will become increasingly
important as the field of proteomics moves toward understand-
ing how biological context and cellular state impact PPI
networks [5].

Re-constructing PPI networks
Assembly of protein–protein interactions into PPI networks is a
pre-requisite for understanding the effects of mutations at the
network-level, and significant effort has gone into developing
tools and methodologies as the number of identified
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protein–protein interactions has increased. PPI networks are
typically constructed as weighted or unweighted graphs, with
nodes representing individual proteins and edges representing
the interactions between proteins [27]. Using this formulation,
PPI networks can then be analyzed using graph-theoretic con-
cepts such as node degree, which measures the number of edges
connected to a node; clustering, which measures the intercon-
nectivity of that node; and betweenness, which measures the
centrality, or the number of shortest paths that transect a
node [28]. An important question has been to understand how
these network features correlate to biological function. For
example, nodes with high degree represent hub proteins in the
network, and sets of highly connected nodes may represent a
functional module or protein complex [29]. Finally, the effects
of mutations on PPI networks may be formalized as ‘node
removal’ events, in which a mutation causes the loss of a pro-
tein and its associated edges in the network (e.g., a null muta-
tion) or alternatively ‘edgetic’ mutations, whereby edges are
selectively removed from the network, corresponding to muta-
tions that impact specific interaction interfaces but not
others [30].

A relatively new development in the field of PPI network
analysis is to integrate the increasingly large volumes of protein
structural information to create ‘3D’ PPI networks [31,32]. This
is particularly relevant for understanding how mutations impact
PPI networks, since it places detailed structural descriptions of
mutant proteins in their network context. By integrating gene–
disease associations and known mutations with 3D PPI net-
works, it was found that certain classes of disease-associated
mutations are enriched on interaction interfaces [33]. Further-
more, mutations on corresponding interaction interfaces of
partner proteins were significantly more likely to be linked to
the same disease, and mutations of different interfaces of the
same protein were less likely to cause the same disease than
mutations on the same interface, thus providing molecular
explanations for the phenomena of gene pleiotropy and locus
heterogeneity [33,34]. A long-standing challenge in constructing
PPI networks has been to discriminate low confidence (or false
positive) protein–protein interactions from bona fide ones.
Homologous, co-crystal, and predicted protein structures, can
all add to the confidence of mapped interactions by assessing
their actual or predicted solvent accessible areas and therefore
the likelihood of interactions between proteins [32,35]. Computa-
tional approaches can be used to combine functional and struc-
tural data that can be used to classify interactions according to
their confidence, and these classifiers have prediction accuracy
as high as experimental data in both yeast and human [36]. 3D
PPI networks also enhance the understanding of a protein’s
position and interactions within its environment, facilitating
identification of the central multi-domain proteins, commonly
occurring interaction pairs and possible unspecific target
effects [37,38].

Finally, given the large volumes of protein–protein interac-
tion data, an important component of the protein interaction
infrastructure are the databases that collate, curate and enable

analysis of the data. These resources typically integrate primary
data, literature and data analysis tools, allowing users to query
both individual and lists of proteins, for physical, functional,
and genetic interactions. Interaction databases such as Bio-
Grid [39], STRING [40], and IntAct [41] all display graphical
representations of interactions that can be modified by data
source and interaction confidence scores.

How do mutations alter protein interactions & PPI
networks?
Mutations that alter protein structure may have consequences
at different levels, from the function and structure of the
individual protein, knock-on effects on interacting partner
proteins, broader global effects through the PPI network, and
ultimately phenotypic effects at the cellular level and beyond.
Here, we consider some of the important consequences of
cancer-associated mutations on proteins and PPI networks.
Primary protein sequence may be altered by mutations in
diverse ways including substitution, insertion, deletion or
truncation. In turn, this can have far-reaching effects on pro-
teins, such as alterations of structural conformation, stability
and interactions. Although there is a huge body of knowledge
detailing how mutations and variants alter protein structure,
much less is known about the PPI network-level consequences
of mutations.

Changes in protein stability are an important consequence of
mutations by altering the abundance and sub-cellular localiza-
tion of proteins and their associated interaction partners.
b-catenin, the primary effector of Wnt signaling, is a well-
studied example of this phenomenon; mutations that alter or
delete key serine residues in b-catenin allow the protein to
escape phosphorylation and degradation by the destruction
complex resulting in stabilization and aberrant accumulation [42].
This promotes b-catenin accumulation in the nucleus, with con-
comitant activation of Wnt gene-expression programs [12,43–45].
Stabilization also alters b-catenin interaction partners. For exam-
ple, we found that stabilized mutant b-catenin interacts with
DNA methyltransferase I (Dnmt1) in the nucleus of colorectal
cancer cells. This interaction promotes the stability of both pro-
teins, is associated with new b-catenin interaction partners
including lysine-specific demethylase I, and impacts Wnt signal-
ing activity and DNA methylation activity [10]. Importantly,
mutations that constitutively activate or stabilize oncoproteins
are likely to have more complex downstream activities that can
be explained by simple activation of the associated signaling
pathway [46]. For example, analyses of the network-level effects
of oncogenic RAS mutations have revealed complex positive and
negative feedback mechanisms [47].

Specific changes in physicochemical properties of substituted
amino acids are an important determinant of the resulting
effects. For example, large changes in amino acid charge typi-
cally result in protein destabilization, with the opposite being
true for small changes [48]. Mutational phenotypes may also be
dependent on their destabilizing energy changes, as is the case
with RASopathies.
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RASopathies are a group of syndromes that display a wide
and varied range of symptoms, occasionally including cancer as
a minor component. They are caused by germline mutations in
the components of the RAS/MAPK pathway, a pathway that is
frequently involved in the development of cancer. There are
15 genes that when found mutated are involved in both RASo-
pathies and cancer independently. Kiel and Serrano [49] found
that mutations that were exclusively cancer-associated had a
higher energy change and were randomly distributed within the
protein sequence, whereas mutations causing RASopathies were
clustered in specific structural regions responsible for protein
signaling activation. There may not be a simple, linear relation-
ship between the immediate molecular effects of a mutation
and the phenotypic or network-level consequences. Through
analysis of mutations in yeast, it has been found that mutations
that subtly alter binding properties of interacting partners actu-
ally may have more serious phenotypic consequences than
knock-out mutations [50].

Mutations that result in protein destabilization may not nec-
essarily result in inactive or degraded protein, but rather in a
dependence on other proteins for their stability. For example,
wild-type B-Raf proteins do not require the stabilizing and
folding activity of the chaperone Hsp90, whereas their cancer-
associated mutant counterparts do [51]. Indeed, mutant but not
wild-type B-Raf, can be completely silenced by targeted inhibi-
tion of Hsp90, leading to cell cycle arrest and apoptosis [51].
Protein dimers, such as IDH1, can be stabilized by point muta-
tions resulting in a change of residue accessibility that impairs
ligand interaction, locking the dimer in an inactive conforma-
tion lacking catalytic activity [52,53]. Mutations may occur in
both functional and accessory regions of the protein, potentially
directly affecting protein interactions through alteration of the
favorability of electrostatic interactions [48]. Interaction site
mutations can cause changes, such as hydrophobic destabiliza-
tion, loss of electrostatic salt bridges, changes in the main-chain
protein conformation, and formation of steric clashes [34].

An in-depth understanding of the effects of mutations on
protein structure and function requires significant investment
of time and effort, and is available for relatively few proteins.
High-throughput techniques such as next-generation sequenc-
ing of whole genomes are able to identify large numbers of
mutations very rapidly. This is nowhere more apparent than in
the field of cancer genomics, where sequencing of whole tumor
genomes is rapidly identifying thousands of somatic mutations
across diverse cancers [54,55]. For the vast majority of these
mutations, their effects on protein structure, function and inter-
actions are unknown. Cancer mutations may be classified as
‘drivers’ or ‘passengers’ where drivers are those mutations that
provide selective growth or other advantage to cancer cells and
passengers are neutral mutations that accumulate in cancer
cells [56], and several computational methods have been devel-
oped to classify mutations according to their functional effects.
For example, the CHASM method uses a machine learning
method trained on multiple predictive features to specifically
identify deleterious missense cancer mutations [57]. CanPredict

combines metrics that predict whether non-synonymous
amino-acid substitutions are tolerant or intolerant, based on
evolutionary conservation with domain-based conservation and
gene annotations to create a classifier for identification of dele-
terious mutations [58]. While these methods aim to identify
mutations that alter protein function, they do not explicitly
consider the effects of mutations on PPI networks. A recent
study focusing on cancer-associated SH2 domain–phosphotyro-
sine interactions sought to predict the effects of mutations on
these interactions as well as their more global effects at the
network level [59]. The authors used a statistical mechanics
framework to predict the effects of mutations on SH2
domain–phosphotyrosine residues by integrating experimental
peptide–domain interaction as well as known PPI networks.
Intriguingly, the effect of mutations on SH2–phosphotyrosine
interactions was not correlated to the mutation frequency, sug-
gesting that many low-frequency somatic mutations in cancer
may be functionally important.

Finally, how network topology relates to biological function
is an important part of understanding the effects of mutations
on PPI networks. For example, network hubs (highly con-
nected proteins) have specific features in PPI networks, having
been shown to be more essential, and with a higher likelihood
of driver mutations in cancer [60,61]. Hub proteins may be fur-
ther defined as ‘party’ hubs or as ‘date’ hubs. These categories
were originally defined according to whether their interacting
partners were co-expressed (party hubs) or incoherently
expressed (date hubs) [62], although there has been considerable
discussion about whether these categories represent real distinc-
tion in biological networks [63]. They are, at the very least, a
useful framework for considering the function of proteins in
PPI networks, since hubs may also be viewed as either single-
interface nodes or multi-interface nodes. Single-interface nodes
typically bind transiently to a wide range of partners, while
multi-interface nodes are more likely to have high-affinity inter-
action partners and often are the central members of protein
complexes [64].

Expert commentary & Five-year view
Understanding how cancer-associated mutations alter PPI net-
works requires integrated computational and experimental
approaches. Applications of large-scale interaction proteomics
have so far principally focused on coverage; identifying the
interaction partners for as much of the proteome as possible.
While these datasets provide a baseline interactome for thou-
sands of different proteins, they are limited by the biological
context in which they are performed. In the next phase of PPI
network mapping, we can expect to see more insight into how
PPI networks respond dynamically to the cellular state, or how
PPI networks vary according to the tissue. This will be impor-
tant in understanding cancer PPI networks, as the cancer cell
state is determined by the cell’s genotype (mutation landscape),
its immediate environment and most importantly, the interac-
tion between these features. Applications of interaction and
quantitative proteomics in relevant cancer model systems will
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provide detailed descriptions of cancer PPI networks. Contin-
ued developments in quantitative proteomics (accuracy, depth,
and coverage) will enhance these networks, and, importantly,
provide dynamic views of PPI networks.

Several different types of data will contribute to our growing
understanding of mutations and their effects on PPI networks.
First, we can anticipate growing repositories of (somatic) muta-
tion information from large-scale analyses of tumors. Although
we currently know relatively little about the effects (or not) of
these mutations on proteins and protein interaction networks
in cancer, we can anticipate that in the next few years, contin-
ued development of tools (both computational and experimen-
tal) that can better define or predict mutation function will
occur. Second, 3D PPI networks, in which structural and PPI

network data are integrated will continue to be developed
through the acquisition of more high resolution protein struc-
tures, and high-quality protein interactions proteomics data.
These efforts will bridge the current gap between genomics and
functional proteomics and phenotype.
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Key issues

. Field must move toward mapping protein–protein interactions in specific contexts.

. More widespread adoption of techniques for analysis of protein–protein interactions in specific biological contexts such as cancer cells

with specific mutations.

. Detailed biological context information should accompany protein–protein interactions in databases with appropriate query tools.

. Development of standardized integration methods for construction of 3D PPI networks.

. Improving the integration of interaction domain mutagenesis and binding coefficient data with 3D PPI networks.

. Better prediction, classification, and understanding of ‘driver’ and ‘passenger’ mutations in cancer.
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